Transcriptomic Complexity of Aspergillus terreus Velvet Gene Family under the Influence of Butyrolactone I

نویسندگان

  • Elina K. Palonen
  • Sheetal Raina
  • Annika Brandt
  • Jussi Meriluoto
  • Tajalli Keshavarz
  • Juhani T. Soini
چکیده

Filamentous fungi of the Ascomycota phylum are known to contain a family of conserved conidiation regulating proteins with distinctive velvet domains. In Aspergilli, this velvet family includes four proteins, VeA, VelB, VelC and VosA, and is involved in conidiation and secondary metabolism along with a global regulator LaeA. In A. terreus, the overexpression of LaeA has been observed to increase the biogenesis of the pharmaceutically-important secondary metabolite, lovastatin, while the role of the velvet family has not been studied. The secondary metabolism and conidiation of A. terreus have also been observed to be increased by butyrolactone I in a quorum-sensing manner. An enlightenment of the interplay of these regulators will give potential advancement to the industrial use of this fungus, as well as in resolving the pathogenic features. In this study, the Aspergillus terreus MUCL 38669 transcriptome was strand-specifically sequenced to enable an in-depth gene expression analysis to further investigate the transcriptional role of butyrolactone I in these processes. The sequenced transcriptome revealed intriguing properties of the velvet family transcripts, including the regulator laeA, and uncovered the velC gene in A. terreus. The reliability refining microarray gene expression analysis disclosed a positive regulatory role for butyrolactone I in laeA expression, as well as an influence on the expression of the canonical conidiation-regulating genes under submerged culture. All of this supports the suggested regulative role of butyrolactone I in A. terreus secondary metabolism, as well as conidiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on: “Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture? Microorganisms 2017, 5, 22”

A recent article by Palonen et al. describes the effect of butyrolactone I on the expression of a secondary metabolite biosynthesis gene cluster from Aspergillus terreus that shows similarities to fusarubin biosynthesis gene clusters from Fusarium species. The authors claim that two different types of pigments are formed in Aspergillus terreus conidia, whereby one pigment is termed a DOPA-type ...

متن کامل

Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture?

Pigments and melanins of fungal spores have been investigated for decades, revealing important roles in the survival of the fungus in hostile environments. The key genes and the encoded enzymes for pigment and melanin biosynthesis have recently been found in Ascomycota, including Aspergillus spp. In Aspergillus terreus, the pigmentation has remained mysterious with only one class of melanin bio...

متن کامل

Butyrolactones from Aspergillus terreus.

In the process development of lovastatin using Aspergillus terreus DRCC 152 in solid state fermentation, we have isolated a new butyrolactone-IV (3) along with the previously reported butyrolactone-I (1) and butyrolactone-II (2) produced under submerged conditions. The structure of compound 3 has been characterized as 3-hydroxy-5-[2-(1-hydroxy-1-methylethyl)-2(R)-2,3-dihydro-benzo[b]furan- 5 yl...

متن کامل

Antidiabetic and Antioxidative Activities of Butyrolactone I from Aspergillus terreus MC751

The bioassay-guided isolation and purification of an ethyl acetate extract of Aspergillus terreus MC751 led to the characterization of butyrolactone I as an antidiabetic and antioxidant. The antidiabetic activity of butyrolactone I was evaluated by αglucosidase and α-amylase inhibition assays. Butyrolactone I demonstrated significant concentration-dependent, mixed-type inhibitory activity again...

متن کامل

Effect of butyrolactone I on the producing fungus, Aspergillus terreus.

Butyrolactone I [alpha-oxo-beta-(p-hydroxyphenyl)-gamma-(p-hydroxy-m-3, 3-dimethylallyl-benzyl)-gamma-methoxycarbonyl-gamma-butyrolactone] is produced as a secondary metabolite by Aspergillus terreus. Because small butyrolactone-containing molecules act as self-regulating factors in some bacteria, the effects of butyrolactone I on the producing organism were studied; specifically, changes in mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017